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Abstract
Within the framework of the theory of interacting classical and quantum gases,
it is shown that the atomistic constitution of gases can be understood as a
consequence of (second) quantization of a continuum theory of gases. In
this paper, this is explained in some detail for the theory of non-relativistic
interacting Bose gases, which can be viewed as the second quantization
of a continuum theory whose dynamics is given by the Hartree equation.
Conversely, the Hartree equation emerges from the theory of Bose gases in
the mean-field limit. It is shown that, for such systems, the time evolution
of ‘observables’ commutes with their Wick quantization, up to quantum
corrections that tend to zero in the mean-field limit. This is an Egorov-type
theorem.

PACS numbers: 11.10.Ef, 05.45.−a, 05.30.Jp

1. Introduction

Physics in the twentieth century has been marked by the experimental verification and
theoretical vindication of one basic paradigm and three revolutions. The paradigm is atomism;
it assumes that matter is composed of atoms. It was created by ancient Greek natural
philosophers. Newton, Maxwell, Boltzmann and others were ardent advocates of an atomistic
view of matter. In his treatise ‘Opticks’, Newton writes: ‘All things being considered, it seems
probable to me that God in the Beginning formed Matter in solid, massy, hard, impenetrable,
moveable Particles . . . .’ Light was included in Newton’s atomistic views of nature. He held
the opinion that light consisted of point-like particles.

The three revolutions alluded to above are:

(1) The passage from classical to quantum mechanics.
(2) The replacement of Newton’s absolute space and time by the spacetime continuum of the

special theory of relativity, i.e. Minkowski space, and of Galilei covariance by Poincaré
covariance.

(3) The passage from a rigid spacetime to the ‘dynamical’ spacetime of the general theory
of relativity that depends on the distribution of matter and describes the gravitational
interactions of matter.
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Traces of atomism and of the three revolutions just described miraculously appear in two
Laws of Nature:

(i) Newton’s Law of Universal Gravitation

F(r) = −Gm1m2

r3
r, (1)

where G is Newton’s gravitational constant, and
(ii) Planck’s law for the spectral energy density of black-body radiation

ρ(T , ν) = 2
4πν2

c3

hν

ehν/kT − 1
, (2)

where c denotes the speed of light, h is Planck’s constant and k is Boltzmann’s constant.

Planck recognized that these two laws contain four-dimensionful fundamental constants of
nature, k, h, c, and lP :=

√
Ghc−3 (the ‘Planck length’), which (together with the universal

gas constant R or Faraday’s constant F) appear to determine all other fundamental constants.
He foresaw that every one of these four constants would stand for a revolution in the world
view of physics: k and h stand for atomism and quantum theory, which are fellow travellers, c
for special relativity and c and lP for general relativity.

Neither atomism nor the three revolutions which occurred during the first quarter of
the twentieth century were immediately widely accepted by the physicists. Before 1900,
Planck rejected atomism. Surprisingly, the chemist Ostwald was an outspoken adversary
of the atomistic view, and Mach wrote, as late as 1913: ‘I must [. . .] assuredly disclaim to
be a forerunner of the relativists as I withhold from the atomistic belief of the present day.’
Einstein’s atomistic view of electromagnetism, in particular his concept of light quanta or
photons, encountered disbelief and doubt until 1920s. For further historical details, see [18].

Einstein’s discovery of photons has the interesting feature that it links the atomistic
constitution of light to quantization. Starting from the Wien–Planck ‘quantum theory’ of
black-body radiation, he derives a formula for the entropy difference of black-body radiation of
frequency ν in an energy interval �E inside two containers of volumes V and V0, respectively:

S − S0 = k log

(
V

V0

)�E/hν

. (3)

Comparing this expression with Boltzmann’s principle, S = k log W , where W is the
probability of the state of a system, he deduces that

W = W0

(
V

V0

)�E/hν

. (4)

Comparing this formula with a corresponding formula for the relative probability of the states of
an ideal gas of N independent particles in containers of volumes V and V0, respectively, namely
W = W0(V/V0)

N , he concludes that ‘monochromatic radiation of low density behaves, in
relation to the theory of heat, as if it were composed of independent energy quanta of magnitude
hν’ (with N = �E/hν the number of quanta).

Apparently, the atomistic constitution of light emerges from the quantization of Maxwell’s
theory of the electromagnetic field. In this paper, we discuss another example of the same
phenomenon that the atomistic constitution of matter can be viewed as a consequence of
‘quantization’: a gas of interacting bosonic atoms. The quantum theory of this system turns
out to be the ‘second quantization’ of a continuum field theory of interacting gases that can be
viewed as a classical Hamiltonian system with infinitely many degrees of freedom—just like
Maxwell’s theory.



Atomism and quantization 3035

The observation that atomism can be seen as a consequence of quantization helps to
complete a picture first suggested by the late Moshe Flato, namely that the new physical
theories born in the three revolutions mentioned above can all be understood as arising from
‘deformations’ of precursor theories. We pause to sketch what may be meant by this claim.

Physical systems � can be characterized by the following data.

(a) An associative ∗-algebra A� , parametrizing the possible outcomes of experiments on �

(the ‘kinematical algebra’ of �);
(b) a convex set S� of states of �, usually defined as positive linear functionals on A� ;
(c) the symmetries G� of �, most often described in terms of ∗-automorphisms (or

∗-endomorphisms) of A� .

Given a class of structurally identical systems, one also wishes to specify

(d) an operation ∨, acting on pairs of data
((
A�1 ,S�1 ,G�1

)
,
(
A�2 ,S�2 ,G�2

))
characterizing

two physical systems, �1 and �2, that associates with �1 and �2 a composed system
�1 ∨ �2, characterized by

(
A�1∨�2 ,S�1∨�2 ,G�1∨�2

)
.

Prominent examples of physical systems are Hamiltonian systems. For a Hamiltonian
system �,A� is the Abelian algebra of smooth functions on a symplectic manifold �� , the
phase space of �. The Poisson bracket equips A� with the structure of a Lie algebra. The
space S� of states of � is given by the probability measures on �� ; pure states correspond
to Dirac δ-functions localized in points of �� . The symmetries of � are described by (some
subgroup of) symplectomorphisms of �� . Two systems �1 and �2 are composed to a system
�1 ∨ �2 by taking the Cartesian product, ��1 × ��2 =: ��1∨�2 , of their phase spaces, etc.

A system � characterized by (A�,S�,G�) can be ‘deformed’ to a new system �̂ by
deforming its kinematical algebra A� to a new associative ∗-algebra A�̂ , and correspondingly
deforming S� to a new convex set of states S�̂ , and/or by deforming the symmetries G� to
a new set of symmetries G�̂ . In addition, a class of structurally identical deformed systems
may admit a new operation of composition ∨.

From this point of view, quantization of a classical Hamiltonian system � consists of
deforming A� = C∞(��) to a new associative, but usually non-Abelian ∗-algebra A�̂ ,
replacing the Poisson bracket by i

h̄
× (commutator of elements in A�̂), and, correspondingly,

passing from S� to the set S�̂ of positive linear functionals on A�̂ , and replacing G� by
a group G�̂ of ∗-automorphisms of A�̂ . The parameter h̄ (Planck’s constant) plays the role
of the ‘deformation parameter’. In the sense of a formal power series, the quantization of
Hamiltonian systems is always possible; see [2, 6, 13].

If the symmetries G� of a physical system � are described in terms of representations of
a Lie group G as ∗-automorphisms of A� , the symmetries G�̂ of a deformation �̂ of � might
arise from a deformation of the symmetry group G to a new symmetry group Ĝ. For example,
if G is the Galilei group, then Ĝ may be the Poincaré group. In this well-known example,
the deformation parameter is c−1 (the inverse of the speed of light). Another example is
encountered if one replaces the symmetry group of translations of a charged particle confined
to a plane R

2 by the non-commutative Heisenberg group of magnetic translations, which is
a central extension of the group R

2 with deformation parameter (‘central charge’) given by
qBc−1, where q is the charge of the particle and B is the component of the external magnetic
field perpendicular to the plane of the system.

If �̂1 and �̂2 are quantizations of classical Hamiltonian systems �1 and �2, respectively,
then composition ∨ is defined in terms of the tensor product

A�̂1∨�̂2
:= A�̂1

⊗ A�̂2
. (5)
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If �1, . . . , �n are identical systems, �j � � for j = 1, . . . , n, then

A�̂1∨...∨�̂n
= A�̂1

⊗s . . . ⊗s A�̂n
, (6)

where ⊗s denotes the symmetric tensor product. If one studies the composition of the Hilbert
spaces of state vectors (rather than of states) of the systems �̂1, . . . , �̂n, one is led to consider
representations of the permutation group of n elements or of the braid group on n strands
describing the transformations of state vectors under exchange of identical subsystems. These
representations describe what is commonly called the ‘(quantum) statistics’ of �̂ (Bose-,
Fermi- or fractional statistics). See [3, 7] for a general analysis.

A quantum system �̂ with fractional statistics, i.e. whose quantum statistics is described
by representations of the braid groups, may have symmetries G�̂ described in terms of
representations of some ‘quantum group’. Many examples of quantum groups arise as
associative deformations of the universal enveloping algebra of a Lie algebra with the structure
of a quasi-triangular Hopf algebra.

The common theme in this discussion is the ‘deformation theory of algebras’ [9], namely
of associative algebras, Hopf algebras, group algebras, Lie algebras, etc. Quantum mechanics
arises from a deformation of associative algebras, the kinematical algebras and the associated
deformation of states; special relativity from a deformation of spacetime and the associated
Lie algebra of spacetime symmetries. Certain forms of fractional statistics can be understood
as arising from deformations of the rule for the composition of identical systems.

In this paper we are interested in understanding atomistic theories of matter as ‘(second)
quantizations’ of continuum theories of matter, the deformation theory involved being the one
of associative ∗-algebras. Although this point of view has been around, at least implicitly,
for a long time, it has rarely been emphasized explicitly. As mentioned above, it underlies
Einstein’s theory of photons. More generally, any quantum field theory that is the quantization
of a classical Hamiltonian field theory provides an example of this point of view. In this paper,
we illustrate it in terms of the theory of interacting (classical and quantum) gases. We focus
on the discussion of quantum gases. A more complete discussion that also includes classical
gases and fluids will appear elsewhere.

A glimpse of the idea that quantum theory and atomism may be inseparable companions
may be gained by studying the classical statistical mechanics of identical particles: the Liouville
measure on the phase space of such systems has the dimension (action)f , where f is the
number of degrees of freedom. In order to define the partition functions of such systems
as dimensionless quantities, one must divide the Liouville measure by the f th power of a
constant (h) with the dimension of an action. Moreover, in order for the basic thermodynamic
potentials to be extensive, one must consider identical particles to be indistinguishable and
divide the partition functions by N !, where N is the number of particles—as first recognized
by Gibbs.

For the purposes of this paper, a classical gas is described as a continuous medium, whose
states are given by specifying a mass density, dµ(x, p) = Mf (x, p) dx dp, on the Cartesian
product of physical space R

3 and momentum space R
3, where M has the dimension of a mass;

Mf (x, p) dx dp is the mass of the gas in the cell dx dp around the point (x, p) ∈ R
3 × R

3.
The total mass of the gas is

∫
dµ(x, p) = νM , where ν := ∫

dx dp f (x, p) is a dimensionless
constant. Apparently,

ρ(x) :=
∫

dp Mf (x, p) (7)
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is the mass density at the point x in space. An example of an equation of motion for f (x, p)

is the Vlasov equation

∂tft (x, p) = − N

M
(p · ∇xft )(x, p) + (∇Veff[ft ] · ∇pft )(x, p), (8)

where N is a dimensionless quantity, t denotes time and

Veff[f ](x) := V (x) +
∫

dy φ(x − y)

∫
dp f (y, p). (9)

Here V is the potential of external forces acting on the gas and φ a two-body potential
describing self-interactions of the gas.

The Vlasov equation arises as the mean-field limit of a classical Hamiltonian system of
n = νN point particles of mass m = M/N , with trajectories (xj (t))

n
j=1, moving in an external

potential V and interacting through two-body forces with potential 1
N

φ(xi −xj ), 1 � i < j �
n. Then ft (x, p) is given by

ft (x, p) = w*- lim
n→∞

ν

n

n∑
j=1

δ(x − xj (t))δ(p − mẋj (t)), (10)

for all times t, provided that (10) holds for t = 0; see [1, 17].
It is of some interest to note that the Vlasov dynamics may be interpreted as Hamiltonian

dynamics on an infinite-dimensional affine phase space, �cl.. (For related, but somewhat
different observations, see [14, 15]). To see this, we write

f (x, p) = α(x, p)α(x, p), (11)

where (α(x, p), α(x, p)) are complex coordinates of �cl.. In particular, ‖α‖2
2 = ν. We choose

�cl. to be a weighted Sobolev space of index 1 and equip it with the Poisson brackets

{α(x, p), α(y, q)} = {α(x, p), α(y, q)} = 0, (12a)

{α(x, p), α(y, q)} = iδ(x − y)δ(p − q). (12b)

A Hamilton functional HVl. is defined on �cl. by

HVl.(α, α) := i
∫

dx dp α(x, p)

[
− N

M
p · ∇x + ∇V (x) · ∇p

]
α(x, p)

+ i
∫

dx dp α(x, p)

[∫
dy dq ∇φ(x − y)|α(y, q)|2

]
· ∇pα(x, p). (13)

The Hamiltonian equations of motion for α,

α̇t (x, p) = {HVl., αt (x, p)}, (14)

and for α then imply the Vlasov equation for f = αα. This formulation of the Vlasov
dynamics can serve as a starting point to recover the atomistic Hamiltonian mechanics of
point particles by ‘deformation quantization’, i.e. by replacing the Poisson brackets (12)
by iN × (commutator of annihilation and creation operators), as will be shown elsewhere.
Here we pass to a ‘first-quantized’ version of the Vlasov equation: the Hartree equation (see
section 3).

We replace (11) by the formula

fh̄(x, p) := 1

(2π)3

∫
dy e−iy·pψ

(
x − h̄y

2

)
ψ

(
x +

h̄y

2

)
, (15)
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i.e. fh̄ is given as the Wigner transform of a wavefunction ψ ∈ L2(R3), with ‖ψ‖2
2 = ν. The

dynamics of ψ is given by the Hartree equation

ih̄∂tψt (x) =
[
− h̄2

2m
� + V (x)

]
ψt(x) +

[∫
dy|ψt(y)|2φ(x − y)

]
ψt(x), (16)

where m = M/N (= mass of a particle). It is shown in [11, 16] that if fh̄,t is defined as the
Wigner transform (15) of ψh̄,t , where ψh̄,t is a solution of (16) with initial data ψh̄,0 satisfying
‖ψh̄,0‖2

2 = ν, then limh̄↘0 fh̄,t solves the Vlasov equation (8) with initial data limh̄↘0 fh̄,0.
Equation (16) can be viewed as the field equation of a classical Hamiltonian field theory for
the wave field ψ . To see this, we define an affine phase space � = �qu. to be given by a
complex weighted Sobolev space of index 1 equipped with Poisson brackets

{ψ(x), ψ(y)} = {ψ(x), ψ(y)} = 0, (17a)

{ψ(x), ψ(y)} = iδ(x − y). (17b)

We define a Hamilton functional HHt. on � by

HHt.(ψ,ψ) := 1

h̄

∫
dxψ(x)

[
− h̄2

2m
� + V (x)

]
ψ(x)

+
1

2h̄

∫
dx

∫
dy|ψ(x)|2φ(x − y)|ψ(y)|2. (18)

Then the Hamiltonian equations of motion for ψ ,

ψ̇t (x) = {HHt., ψt (x)}, (19)

reproduce the Hartree equation (16).
In this paper we show that if the Poisson brackets (17) are replaced by the commutators

[ψ̂N(x), ψ̂N(y)] = [ψ̂∗
N(x), ψ̂∗

N(y)] = 0, (20a)

[ψ̂N(x), ψ̂∗
N(y)] = 1

N
δ(x − y), (20b)

we obtain the atomistic quantum mechanics of a non-relativistic, interacting Bose gas,
described in the formalism of second quantization, as a deformation of the classical Hartree
field theory, with deformation parameter 1/N (see section 4). We also show how the Hartree
field theory can be recovered from the quantum mechanics of the Bose gas in the mean-field
limit, where the number n of bosons is proportional to N, with N → ∞. For this purpose,
we state a Egorov-type theorem, which appears to be a new result, and sketch its proof
(section 5), but see [4, 5, 10, 12, 20] for earlier results. Our considerations can be summarized
in the diagram

An arrow → stands for the limit h̄ ↘ 0,← stands for quantization with deformation parameter
h̄,↓ stands for the mean-field limit (N → ∞) and ↑ stands for ‘second quantization’ with
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deformation parameter 1/N . The diagram is commutative. See [8, 19] for details of related
results.

To speculate a little, we propose the idea that classical general relativity emerges from
a fundamental quantum theory of gravitation in some kind of classical and mean-field limit
(α′ → 0, gs → 0, in the jargon of string theory), somewhat similarly to how the Vlasov
equation emerges from the quantum theory of interacting Bose gases in the limit h̄ → 0,

N → ∞. In this analogy, α′ ∼ h̄, gs ∼ 1/N . (In both examples, double expansions in the two
different parameters yield a strongly divergent series.) In subsequent sections, we explain the
left part of the diagram shown above. More general results, in particular ones concerning the
entire diagram, and extensions of our results to Fermi gases will be reported elsewhere.

2. Quantum Bose gases

We consider a system of n bosons with Hilbert space given by

H(n) := L2
s (R

3n) = L2(R3)⊗sn (21)

and Hamiltonian

H
(n)
N = H

(n)
0 + V

(n)
N , (22)

where1

H
(n)
0 :=

n∑
j=1

[
− 1

2m
�j + V (xj )

]
, V

(n)
N := 1

N

∑
1�i<j�n

φ(xi − xj ). (23)

Here the external potential V � 0 is smooth and polynomially bounded, the interaction
potential φ is bounded, m > 0 is the mass of a particle and 1/N is a dimensionless coupling
constant. The dynamics of the system is described by the Schrödinger equation

i∂tϕ
(n)
t = H

(n)
N ϕ

(n)
t , ϕ

(n)
t ∈ H(n). (24)

The mean-field limit is the limit where n,N → ∞ in such a way that n/N = O(1). The
physical meaning of this limit is most transparent if the system is described in the formalism
of second quantization. The Fock space is the Hilbert space given by

F :=
∞⊕

n=0

H(n). (25)

Subspaces F�k of finite particle number are defined by

F�k :=
k⊕

n=0

H(n). (26)

The Fock space F carries a representation of the canonical commutation relations (CCR):

[ψ̂N(x), ψ̂N(y)] = [ψ̂∗
N(x), ψ̂∗

N(y)] = 0, (27a)

[ψ̂N(x), ψ̂∗
N(y)] = 1

N
δ(x − y), (27b)

with ψ̂N(x) = 0, for all x, y ∈ R
3, where  = (1, 0, 0, . . .) ∈ F is the vacuum. Note

that the creation and annihilation operators, ψ̂∗
N(x), ψ̂N(x), are rescaled by a factor of N−1/2

as compared to the usual ones. This accounts for the factor 1/N in the CCR, in analogy to

1 Here, and in the following, we work in units such that h̄ = 1.
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the usual h̄. Thus, 1/N is given the role of a deformation parameter. The direct sum of the
Hamiltonians (22), acting on Fock space and rescaled by 1/N , can now be written in terms of
the creation and annihilation operators,

ĤN := 1

N

∞⊕
n=0

H
(n)
N = Ĥ0,N + V̂N, (28)

where

Ĥ0,N :=
∫

ψ̂∗
N(x)

[
− 1

2m
� + V (x)

]
ψ̂N(x) dx, (29)

V̂N := 1

2

∫
dx

∫
dy ψ̂∗

N(x)ψ̂∗
N(y)φ(x − y)ψ̂N(y)ψ̂N(x). (30)

Thus the Schrödinger equations (24), with n = 0, 1, 2, . . . , imply the equation
i

N
∂t�t = ĤN�t, �t ∈ F . (31)

Next, we define a kinematical algebra of operators describing the physical properties
of the system. Let a(p) ∈ B(H(p)) be a bounded operator on the p-particle Hilbert space.
Let a(p)(x1, . . . , xp; y1, . . . yp) be the distribution kernel associated with a(p) by the nuclear
theorem. With a(p) we associate an operator ÂN(a(p)) on the Fock space by

ÂN(a(p)) :=
∫ ∫ p∏

i=1

ψ̂∗
N(xi) dxia

(p)(x1, . . . , xp; y1, . . . yp)

p∏
j=1

ψ̂N(yj ) dyj . (32)

For bounded a(p), ÂN(a(p)) is a bounded operator on F�k , for all k < ∞, densely defined on
F and closable. We define a ∗-algebra

Â := 〈ÂN(a(p)) : a(p) ∈ B(H(p)), p = 0, 1, 2, . . .〉, (33)

where 〈·〉 denotes the linear span. By definition Â is a linear space. It is actually a ∗-algebra
of unbounded operators on F . This can be seen from the following properties of the operators
ÂN . Their proof is merely an exercise in Wick ordering.

(i) Let a(p) ∈ B(H(p)) and b(q) ∈ B(H(q)). Then

ÂN(a(p))ÂN(b(q)) =
min(p,q)∑

l=0

(
p

l

)(
q

l

)
l!

Nl
ÂN

(
a(p) ⇀

l
b(q)

)
, (34)

where a(p) ⇀
l

b(q) := Ps(a
(p) ⊗ 11(q−l))(11(p−l) ⊗ b(q)) is a bounded operator on H(p+q−l).

Here Ps is the orthogonal projection onto the subspace of vectors symmetric under the
exchange of particles. In terms of operator kernels, this reads(
a(p) ⇀

l
b(q)

)
(x1, . . . xp+q−l; y1, . . . , yp+q−l )

= Ps

∫ l∏
i=1

dui a
(p)(x1, . . . , xp; y1, . . . , yp−l , u1, . . . , ul)

· b(q)(u1, . . . , ul, xp+1, . . . , xp+q−l; yp−l+1, . . . , yp+q−l ). (35)

(ii) An immediate consequence of (i) is

[
ÂN(a(p)), ÂN(b(q))

] =
min(p,q)∑

l=1

(
p

l

)(
q

l

)
l!

Nl
ÂN

([
a(p) ⇀

l
b(q)

])
, (36)
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where
[
a(p) ⇀

l
b(q)

]
:= a(p) ⇀

l
b(q) − b(q) ⇀

l
a(p).

(iii) ÂN(a(p))∗ = ÂN(a(p)∗), where

a(p)∗(x1, . . . , xp; y1, . . . yp) = a(p)(y1, . . . , yp; x1, . . . xp). (37)

(iv) On the subspaces F�k of bounded particle number, ÂN(a(p)) is bounded and

‖ÂN(a(p))|F�νN ‖ � νp‖a(p)‖. (38)

Furthermore, the operators in Â are gauge invariant. Under the ∗-automorphism τθ , given
by

τθ (ψ̂N(x)) := e−iθ ψ̂N(x) τθ (ψ̂
∗
N(x)) = eiθ ψ̂∗

N(x), (39)

we have τθ (Â) = Â, for all Â ∈ Â. Note that (τθ )θ∈R can be implemented by the one-parameter
unitary group (U(θ))θ∈R on F generated by the number operator

N̂ := N

∫
dxψ̂∗

N(x)ψ̂N(x). (40)

3. A Hamiltonian continuum theory of gases

In this section, we consider a ‘classical’ Hamiltonian system with phase space � = H 1
V(R3),

a weighted complex Sobolev space of index 1, defined as the quadratic form domain of the
operator − �

2m
+V . On � we use complex coordinates ψ(x), ψ(x) and define a Poisson bracket

{·, ·} through

{ψ(x), ψ(y)} = {ψ(x), ψ(y)} = 0, (41a)

{ψ(x), ψ(y)} = iδ(x − y). (41b)

A Hamilton functional is defined by

H (ψ,ψ) = H0(ψ,ψ) + V (ψ,ψ), (42)

where

H0(ψ,ψ) :=
∫

dx ψ(x)

[
− 1

2m
� + V (x)

]
ψ(x) (43)

V (ψ,ψ) := 1

2

∫
dx

∫
dy|ψ(x)|2φ(x − y)|ψ(y)|2. (44)

The Hamiltonian equations of motion corresponding to H are given by the Hartree equation

∂tψt (x) = {H , ψt (x)} = −i

[
− 1

2m
� + V (x)

]
ψt(x) − i(φ ∗ |ψt |2)(x)ψt (x), (45)

where * denotes convolution (ψt(x) satisfies the complex conjugate equation). Since V is
smooth and polynomially bounded and φ bounded, (45) has global solutions for arbitrary
initial conditions ψ0 ∈ �.2 This can be used to define a global symplectic flow �t on � by

�t(ψ) := ψt, (46)

where ψt is the solution of (45) with initial data ψ .

2 Actually global solutions exist for arbitrary ψ0 ∈ L2(R3), since Duhamel’s formula implies that the map ψ0 �→ ψt

is L2-bounded.
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The function N (ψ,ψ) := ∫
dx|ψ(x)|2 = ‖ψ‖2

2 generates the gauge transformations

ψ(x) �→ e−iθψ(x), ψ(x) �→ eiθψ(x). (47)

Gauge invariance of H and Noether’s theorem imply that the ‘charge’ N is a conserved
quantity of the flow �t . Since the system is autonomous, the energy H is conserved as well.

We introduce an algebra A of ‘classical’ observables in analogy to Â defined above. For
a(p) ∈ B(H(p)), we define the function A(a(p)) on � by

A(a(p))(ψ,ψ) :=
∫ ∫ p∏

i=1

ψ(xi) dxia
(p)(x1, . . . , xp; y1, . . . yp)

p∏
j=1

ψ(yj ) dyj , (48)

and set

A := 〈A(a(p)) : a(p) ∈ B(H(p)), p = 0, 1, 2, . . .〉. (49)

This is clearly an Abelian ∗-algebra under pointwise multiplication, and it is equipped
with a Poisson bracket. A natural analogue of property (iii) of section 2 holds. The
boundedness property (iv) now reads: the unbounded functions A ∈ A are bounded on
the balls B�ν := {

ψ ∈ � : ‖ψ‖2
2 � ν

}
, with

‖A(a(p))|B�ν ‖∞ � νp‖a(p)‖. (50)

Moreover, all functions in A are gauge invariant.

4. Quantization

In this section, we interpret the original quantum-mechanical problem as the quantization
of the classical Hamiltonian system described in section 3. Quantization is the linear map
(̂ · )N : A �→ Â defined by the substitution

ψ(x) �→ ψ̂∗
N(x), (51a)

ψ(x) �→ ψ̂N(x), (51b)

followed by Wick ordering (see (48) and (32)). Note that quantization maps the Poisson
bracket {ψ#1(x), ψ#2(y)} to the commutator iN

[
ψ̂

#1
N (x), ψ̂

#2
N (y)

]
(where a symbol #i stands

for either complex conjugate, respectively adjoint, or nothing). Furthermore we have, under
quantization,

A �→ Â∗
N, (52)

A(a(p)) �→ ÂN(a(p)), (53)

H �→ ĤN . (54)

Thus, A is deformed to Â, with deformation parameter 1/N .
Quantization does, of course, not intertwine the quantum-mechanical time evolution with

the classical (Hartree) time evolution, except when φ = 0. Denoting by �t
0 the classical flow

for φ = 0, we have the following result.

Lemma.

(a) A(a(p)) ◦ �t
0 = A

(
eitH (p)

0 a(p) e−itH (p)

0
)
, (55)

(b) eitNĤ0,N ÂN (a(p)) e−itNĤ0,N = (
A(a(p)) ◦ �t

0

)̂
N
. (56)

To conclude this section, we note that the quantization of the continuum theory of gases
described by the Hartree equation (section 3) apparently reproduces the atomistic quantum
theory of interacting Bose gases (section 2), as discussed in section 1.
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5. The mean-field limit and a Egorov theorem

Here we state our main result: Quantization intertwines the full quantum-mechanical time
evolution with the Hartree evolution in the mean-field limit.

Theorem 1. Let ν > 0 be an arbitrary constant and a(p) as above. Then

eitNĤN ÂN(a(p)) e−itNĤN
∣∣
F�νN = (A(a(p)) ◦ �t )̂N

∣∣
F�νN + o(1), (57)

as N → ∞.

Proof. The proof is based on an expansion of (57) for small times, which is then iterated to
obtain the claim for all times. We begin with some comments on notation. The interaction
potential can be written as

V̂N = 1
2 ÂN(φ(2)), (58)

with φ(2)(x1, x2; y1, y2) := φ(x1 − y1)δ(x2 − y1)δ(y2 − x1) and ‖φ(2)‖ = ‖φ‖∞. Denote by

a
(p)
t := eitH (p)

0 a(p) e−itH (p)

0 (59)

the operator a(p) evolved to time t, using the one-particle dynamics. We expand the left-hand
side of (57) by using the above lemma:

eitNĤN ÂN(a(p)) e−itNĤN = ÂN

(
a

(p)
t

)
+

∫ t

0
ds eisNĤN e−isNĤ0,N

iN

2

[
ÂN(φ(2)

s ), ÂN

(
a

(p)
t

)]
eisNĤ0,N e−isNĤN . (60)

Iteration of this identity yields a Schwinger–Dyson series that converges for all times t, but
with convergence estimates in N that become useless as N → ∞. A look at the commutator

iN

2

[
ÂN(φ(2)

s ), ÂN

(
a

(p)
t

)] =
2∑

l=1

(
p

l

)(
2

l

)
il

2Nl−1
ÂN

([
(φ(2)

s )⇀
l

(
a

(p)
t

)])
(61)

suggests splitting the iterated series into two parts. As we iterate (60), we generate ‘tree terms’
(l = 1) and ‘loop terms’ (l = 2). As soon as a loop term is generated, we stop expanding and
put it into an error term of order 1/N . Thus, we get

eitNĤN ÂN(a(p)) e−itNĤN = T̂ (a(p), t) + R̂(a(p), t), (62)

where

T̂ (a(p), t) :=
∞∑

k=0

ik(p + k − 1)(p + k − 2) · · · p
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tk−1

0
dtk

· ÂN

([
φ

(2)
tk ⇀

1

[
φ

(2)
tk−1

⇀
1

. . .
[
φ

(2)
t1 ⇀

1
a

(p)
t

]]])
(63)

and

R̂(a(p), t) :=
∞∑

k=0

ik+1

2N
(p + k)(p + k − 1) · · · p(p + k − 1)

∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tk

0
dtk+1

· eitk+1NĤN e−itk+1NĤ0,N ÂN

([
φ

(2)
tk+1

⇀
2

[
φ

(2)
tk ⇀

1
. . .

[
φ

(2)
t1 ⇀

1
a

(p)
t

]]])
· eitk+1NĤ0,N e−itk+1NĤN . (64)

Using the bound (38) it is not hard to see that, on the subspace F�νN , both series converge
absolutely if

|t | � 1

4ν‖φ‖∞
. (65)
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Note that one could only stop expanding after M loops have been generated (instead of
M = 1 here), thus getting a systematic 1/N -expansion of the form

eitNĤN ÂN(a(p)) e−itNĤN

= T̂ (a(p), t) + L̂1(a
(p), t) + · · · + L̂M(a(p), t) + R̂M(a(p), t), (66)

where, on F�νN , the ‘m-loop term’ L̂m is of order N−m. All terms converge absolutely
provided that |t | is smaller than the convergence radius given in (65).

In order to make the link with the Hartree time evolution, we expand the right-hand side
of (57) in a Schwinger–Dyson series (a subscript time index on an observable again denotes
free time evolution):

A(a(p)) ◦ �t =
∞∑

k=0

∫ 1

0
dt1 . . .

∫ tk−1

0
dtk

{
Vtk ,

{
Vtk−1 , . . .

{
Vt1 , A

(
a

(p)
t

)}}}
. (67)

Using

{A(a(p)), A(b(q))} = ipqA
([

a(p) ⇀
1

b(q)
])

(68)

(no loop terms are generated for the classical dynamics), as well as V = A(φ(2))/2, we find
that

A(a(p)) ◦ �t =
∞∑

k=0

ik(p + k − 1)(p + k − 2) · · · p
∫ t

0
dt1

∫ t1

0
dt2 . . .

∫ tk−1

0
dtk

·A([
φ

(2)
tk ⇀

1

[
φ

(2)
tk−1

⇀
1

. . . [φ(2)
t1 ⇀

1
a

(p)
t ]

]])
. (69)

As above, using (50), it is easy to show that the series converges absolutely on B�ν if |t | <

(4ν‖φ‖∞)−1. Quantization and comparison with (63) prove the claim for |t | < (4ν‖φ‖∞)−1.
To iterate these expansions, it is crucial that the convergence radius (65) is independent

of p, so that each term of (63) may be iterated by a time step τ < (4ν‖φ‖∞)−1. A priori, the
error term R̂ is not uniformly bounded in p, so that a cutoff in k is necessary. Given ε > 0,
we choose K large enough that the tail k > K of (63) is bounded by ε, and expand each term
with k � K . All loop terms are put into an error term. We continue iteratively in this fashion
for a finite number s of steps and reach all times � sτ . As the number of loop terms increases
at each iteration, we choose ε = ε(N), with ε(N) → 0, as N → ∞, sufficiently slowly
to guarantee the vanishing of the error term in the limit N → ∞. The bound so obtained
is weaker than the 1/N estimate obtained for short times. We repeat a similar analysis for
the classical expansion. As before, the claim follows by comparing the quantized classical
expansion with the quantum-mechanical one. �

Acknowledgments

We thank S Graffi, E Lenzmann, B Schlein and S Schwarz for very useful discussions.

References

[1] Braun W and Hepp K 1977 The Vlasov dynamics and its fluctuations in the 1 / N limit of interacting classical
particles Commun. Math. Phys. 56 101–13

[2] Cattaneo A S and Felder G 2000 A path integral approach to the Kontsevich quantization formula Commun.
Math. Phys. 212 591–611

[3] Doplicher S, Haag R and Roberts J E 1971 Local observables and particle statistics I Commun. Math. Phys.
23 199–230

http://dx.doi.org/10.1007/BF01611497
http://dx.doi.org/10.1007/s002200000229
http://dx.doi.org/10.1007/BF01877742


Atomism and quantization 3045

Doplicher S, Haag R and Roberts J E 1974 Local observables and particle statistics II Commun. Math. Phys.
35 49–85

[4] Elgart A and Schlein B 2005 Mean field dynamics of boson stars Preprint math-ph/0504051
[5] Erdös L and Yau H-T Derivation of the nonlinear Schrödinger equation from a many body Coulomb system

Preprint math-ph/0111042
[6] Fedosov B 1996 Deformation Quantization and Index Theory (Berlin: Akademie Verlag)
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